Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 13: 899617, 2022.
Article in English | MEDLINE | ID: covidwho-1903023

ABSTRACT

COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration: https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/prevention & control , Chickens , Female , Humans , Immunoglobulins , Rats , Spike Glycoprotein, Coronavirus
2.
Science ; 372(6546): 1108-1112, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1388437

ABSTRACT

The molecular composition and binding epitopes of the immunoglobulin G (IgG) antibodies that circulate in blood plasma after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unknown. Proteomic deconvolution of the IgG repertoire to the spike glycoprotein in convalescent subjects revealed that the response is directed predominantly (>80%) against epitopes residing outside the receptor binding domain (RBD). In one subject, just four IgG lineages accounted for 93.5% of the response, including an amino (N)-terminal domain (NTD)-directed antibody that was protective against lethal viral challenge. Genetic, structural, and functional characterization of a multidonor class of "public" antibodies revealed an NTD epitope that is recurrently mutated among emerging SARS-CoV-2 variants of concern. These data show that "public" NTD-directed and other non-RBD plasma antibodies are prevalent and have implications for SARS-CoV-2 protection and antibody escape.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibody Affinity , COVID-19/prevention & control , Epitopes/immunology , Humans , Immune Evasion , Immunoglobulin G/blood , Immunoglobulin G/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Variable Region/immunology , Mice , Mice, Inbred BALB C , Mutation , Protein Domains , Proteomics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
3.
Science ; 369(6508): 1261-1265, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-697063

ABSTRACT

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds angiotensin-converting enzyme 2 (ACE2) on host cells to initiate entry, and soluble ACE2 is a therapeutic candidate that neutralizes infection by acting as a decoy. By using deep mutagenesis, mutations in ACE2 that increase S binding are found across the interaction surface, in the asparagine 90-glycosylation motif and at buried sites. The mutational landscape provides a blueprint for understanding the specificity of the interaction between ACE2 and S and for engineering high-affinity decoy receptors. Combining mutations gives ACE2 variants with affinities that rival those of monoclonal antibodies. A stable dimeric variant shows potent SARS-CoV-2 and -1 neutralization in vitro. The engineered receptor is catalytically active, and its close similarity with the native receptor may limit the potential for viral escape.


Subject(s)
Betacoronavirus/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Engineering , Receptors, Virus/genetics , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Binding Sites , Binding, Competitive , Cell Line , Humans , Models, Molecular , Mutagenesis , Mutation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Receptors, Coronavirus , Receptors, Virus/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
4.
Cell Host Microbe ; 28(3): 486-496.e6, 2020 09 09.
Article in English | MEDLINE | ID: covidwho-627576

ABSTRACT

There is an urgent need for vaccines and therapeutics to prevent and treat COVID-19. Rapid SARS-CoV-2 countermeasure development is contingent on the availability of robust, scalable, and readily deployable surrogate viral assays to screen antiviral humoral responses, define correlates of immune protection, and down-select candidate antivirals. Here, we generate a highly infectious recombinant vesicular stomatitis virus (VSV) bearing the SARS-CoV-2 spike glycoprotein S as its sole entry glycoprotein and show that this recombinant virus, rVSV-SARS-CoV-2 S, closely resembles SARS-CoV-2 in its entry-related properties. The neutralizing activities of a large panel of COVID-19 convalescent sera can be assessed in a high-throughput fluorescent reporter assay with rVSV-SARS-CoV-2 S, and neutralization of rVSV-SARS-CoV-2 S and authentic SARS-CoV-2 by spike-specific antibodies in these antisera is highly correlated. Our findings underscore the utility of rVSV-SARS-CoV-2 S for the development of spike-specific therapeutics and for mechanistic studies of viral entry and its inhibition.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/physiology , Vesicular stomatitis Indiana virus/physiology , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/pharmacology , Betacoronavirus/genetics , Betacoronavirus/physiology , COVID-19 , COVID-19 Vaccines , Cell Line , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Drug Evaluation, Preclinical , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Mutation , Neutralization Tests , Pandemics/prevention & control , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Receptors, Virus/genetics , Receptors, Virus/physiology , Recombination, Genetic , SARS-CoV-2 , Serine Endopeptidases/physiology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Vesicular stomatitis Indiana virus/genetics , Viral Vaccines/genetics , Viral Vaccines/immunology , Virus Internalization , Virus Replication/genetics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL